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Transient growth of small disturbances may lead to the initiation of the laminar–
turbulent transition process. Such growth in a two-dimensional laminar flow in a
channel with a corrugated wall is analysed. The corrugation has a wavy form that is
completely characterized by its wavenumber and amplitude. The maximum possible
growth and the form of the initial disturbance that leads to such growth have been
identified for each form of the corrugation. The form that leads to the largest growth
for a given corrugation amplitude, i.e. the optimal corrugation, has been found. It is
shown that the corrugation acts as an amplifier for disturbances that are approximately
optimal in the smooth channel case but has little effect in the other cases. The interplay
between the modal (asymptotic) instability and the transient growth, and the use of
the variable corrugation for modulation of the growth are discussed.

1. Introduction
How surface roughness affects the laminar–turbulent transition process in shear

layers is one of the fundamental questions in fluid dynamics. This question is of prac-
tical interest in several application areas, i.e. laminar airfoils, compact heat ex-
changers, laminar electrostatic precipitators, atmospheric boundary layers, etc. Flows
over rough walls have been studied since the early works of Hagen (1854) and Darcy
(1857) focused on turbulent flows; however, Reynolds (1883) was the first to pose
the problem in the context of laminar-turbulent transition. In spite of many attempts
(Schlichting 1979) the resolution of this problem is still incomplete.

The original experimental investigations were focused on flows in circular pipes and
the various possible roughness forms were classified using the concept of ‘equivalent
roughness’; see Jimenez (2004) for a recent review. The phenomenological effects of
the equivalent roughness are summarized in the form of the friction coefficient
(Nikuradse 1933; Colebrook 1939; Moody 1944). These and other similar investiga-
tions show that surface roughness contributes directly to the dynamics of flow only
if the wall is hydraulically rough. A precise definition of the hydraulical smoothness
is, however, not available. While the modelling concepts of this type have been
continuously re-evaluated (Bradshaw 2000; Waigh & Kind 1998), they have failed so
far to uncover the mechanisms that govern the complex, flow-condition-dependent
interaction between the roughness geometry and the moving fluid.

It is generally accepted that the beginning of the laminar-turbulent transition
process is associated with the growth of small disturbances. The transition is a complex
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nonlinear phenomenon that is initiated when disturbances reach a certain minimum
threshold required to activate nonlinear effects. The initial stages of disturbance
growth are described by linear theory and may have two forms. In the case of
asymptotic instability, the disturbances continuously grow as a function of time and
can reach an arbitrarily large magnitude that guarantees the onset of nonlinear effects.
The critical conditions required for the growth, i.e. the critical Reynolds number, can
be identified using linear stability theory. In the case of transient growth, the period
of growth is followed by eventual decay. Determination of the largest possible growth
requires solution of the initial value problem where the initial form and magnitude
of the disturbance are important. The transition process may begin only if the
disturbance magnitude reaches a level that is large enough to trigger secondary effects
and this can be determined only through an auxiliary analysis. In summary, in this
case the transition may begin only if the initial disturbance amplitude is sufficiently
high.

Growth of disturbances in flow regimes covered by linearized disturbance equations
and under idealized conditions has been reviewed by Schmid & Henningson (2001).
The term ‘idealized flow conditions’ refers here to flows in quiet environments and
bounded by smooth walls. Much less is known about the non-idealized situations
and, in particular, about the disturbance dynamics in flows bounded by walls with
distributed surface roughness. It is known from experiments that when the roughness
is hydraulically ‘active’ the disturbance growth is explosive (Reshotko 1984; Corke,
Bar Sever & Morkovin 1986). Theoretical analysis of this process is difficult as the
concept of a rough wall is ill-defined and infinitely many roughness forms are possible.
This leads to a paradox, as it is not possible to investigate all possible shapes. This
paradox is fictitious, however, as roughness geometry can be defined in some generality
in the spectral space (Floryan 1997). Analysis of the effects of different geometries is
reduced in such a formulation to scans of parameter space formed by the coefficients
of spectral expansions. Analysis of asymptotic instability shows that the roughness
destabilizes travelling waves as well as introducing a new instability that gives rise to
streamwise vortices (Floryan 1997, 2004, 2005). Analysis of different roughness shapes
shows a qualitatively similar flow response as long as the spectral components of the
roughness geometry are similar (Floryan 2004). A surprisingly good approximation
of stability properties of flows over complex roughness shapes is obtained by working
with the roughness representation truncated to the leading Fourier mode only, i.e.
the wavy-wall model (Floryan 2004). Comparison of different classes of roughness
shapes permits identification of conditions where surface roughness does not induce
any instabilities; such roughness is referred to as hydraulically ‘non-active’. A wall
with ‘non-active’ roughness is referred to as hydraulically smooth as such roughness
can induce only small changes in the flow (Floryan 2004). Small roughness is able to
produce large changes only if it activates some instability processes; a wall with such
roughness is referred to as hydraulically rough wall. Floryan (2004) provided criteria
that identify roughness characteristics and flow conditions that guarantee that the
rough wall behaves as a hydraulically smooth in the case of channel flow. Since these
criteria are based only on the asymptotic instabilities, one needs to explore transient
disturbance growth.

Analysis of transient disturbance growth involves solution of the initial value
problem for the linear disturbance equations. In the case of a smooth wall one needs
to determine the maximum possible growth at a given time, the maximum possible
growth at any time, the so-called optimal growth, and the form of the initial distur-
bance that leads to the optimal growth, the so-called optimal disturbance. The above
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Figure 1. Diagram of the flow system.

questions are well-defined and the answers are well-known (Trefethen et al. 1993;
Schmid & Henningson 2001). Similar questions need, however, to be generalized to
the case of a rough wall as the growth depends on the roughness geometry. We
shall define the optimal growth as the largest possible growth for a given roughness
amplitude. This growth is a function of the roughness shape, which leads to the
question of the identification of the shape that leads to the largest possible growth, i.e.
the optimal shape or the optimal roughness. In order to avoid the paradox associated
with the analysis of roughness geometry, we shall work with the spectral model. We
shall provide a general formulation of the transient growth problem, but shall focus
our attention and provide detailed results only on the case of the wavy-wall model
which has been very successful in approximating asymptotic instability properties. All
our work will be carried out in the context of two-dimensional Poiseuille flow bounded
by one rough wall, which represents a convenient reference case (Floryan 2004). In
§ 2 we describe the form of the flow in such a channel. Linear disturbance equations
are discussed in § 3. Numerical solution of these equations is discussed in § 4. The
problem of determination of the maximum growth at a given time is formulated in
§ 4.1, the determination of the maximum growth at any time is discussed in § 4.2 and
the problems of identification of the form of the optimal disturbance and the form
of the optimal corrugation are formulated in § 4.3. Section 5 provides a discussion of
our results.

2. Basic state
The basic state has the form of Poiseuille flow spatially modulated by the presence

of wall corrugation (see figure 1). The theory describing modulation is described in
detail by Floryan (1997) in the context of flow modulated by wall transpiration, and
extended to the case of flow modulated by surface corrugations by Szumbarski &
Floryan (1999). The description given below is limited to a short outline.

We consider steady, two-dimensional flow in a channel with a corrugated lower
wall and a smooth upper wall. The flow field is represented in the form

V B(x) = V 0(x) + V 1(x) = [u0(y), 0] + [u1(x, y), v1(x, y)], pB(x) = p0(x) + p1(x),

(2.1)

where V 0, p0 describe the reference plane Poiseuille flow, u0 = 1 − y2, p0 = −2x/Re,
Re is the Reynolds number based on the half-channel height and the maximum
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streamwise velocity, subscript B denotes basic state and V 1, p1 describe modifications
associated with the presence of the corrugation. The channel extends from −∞ to
+∞ in the x-direction and the locations of the lower and upper walls, i.e. yL(x) and
yU (x), respectively, are defined as

yL(x) = −1 +
(
S e(i)αx + CC

)
, yU (x) = 1 (2.2)

where CC stands for the complex conjugate. The flow is scaled using the maximum
of the x-velocity of the reference Poiseuille flow and the average half-channel height.

Because of periodicity of the corrugation, the flow modifications can be represented
in terms of a Fourier expansion, i.e.

Ψ (x, y) =

n=+∞∑
n=−∞

Φ (n)(y) einαx, V 1(x, y) =

n=+∞∑
n=−∞

[
f (n)

u (y), f (n)
v (y)

]
einαx (2.3)

where Ψ represents the stream function defined in the usual manner, i.e. u1 = ∂yΨ,

v1 = −∂xΨ, f (n)
u = DΦ (n), f (n)

v = inαΦ (n), Φ (n) = Φ (−n)∗
, f (n)

u = f (−n)∗
u , f (n)

v = f (−n)∗

v , D=
d/dy and a star denotes complex conjugate. Elimination of pressure and use of (2.3)
reduces the field equations to equations for the functions Φn, n � 0, in the form

[
D2

n − inα Re(u0Dn − D2u0)
]
Φn − iα Re

k=+∞∑
k=−∞

[k DΦn−kDkΦk − (n − k)Φn−kDk DΦk] = 0,

(2.4)

where Dn = D2 − n2α2. The boundary conditions at the channel walls are expressed
in the following form:

u1(x, 1) = 0, v1(x, 1) = 0, (2.5a)

u0(x, yL(x)) + u1(x, yL(x)) = 0, v1(x, yL(x)) = 0. (2.5b)

We select the required closing condition in the form of the fixed mass flux constraint,
i.e.

Ψ0(1) + Ψ (x, 1) = F + Q, (2.6a)

Ψ0(yL(x)) + Ψ (x, yL(x)) = F, (2.6b)

where Ψ0 = −y3/3 + y + 2/3 denotes the stream function of the Poiseuille flow
(continued analytically in −1 − 2S <y < 1, Q stands for the (specified) volume flux
and F denotes an arbitrary constant associated with the introduction of the stream
function (here F denotes value of the stream function at the lower wall). In the
present analysis F = 0 and Q =4/3.

Problem (2.4)–(2.6) has been solved using spectral discretization of Φn based on
the Chebyshev polynomials. Boundary conditions at the corrugated wall have been
implemented using the immersed boundary conditions method. Details of the solution
can be found in Szumbarski & Floryan (1999).

3. Linear disturbance equations
Unsteady, three-dimensional disturbances are superimposed on the basic state

described previously, resulting in the total flow quantities expressed as

V = V B(x, y) + V D(t, x, y, z) (3.1)
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where subscript D denotes disturbance quantities and V D = [uD(x, y, z, t), vD(x, y,

z, t), wD(x, y, z, t)]. Substitution of (3.1) into the vorticity transport equation and
its linearization result in the following set of equations governing the evolution of
disturbances:

∂ωD

∂t
+ (V B∇) ωD − (ωD∇)V B + (V D∇)ωB − (ωB∇)V D = Re−1∇2ωD, (3.2a)

ωB = ∇ × V B, ωD = ∇ × V D, ∇ · V D = 0, (3.2b–d)

where ωB = [0, 0, ωBz(x, y)] and ωD = [ωDx(x, y, z, t), ωDy(x, y, z, t), ωDz(x, y, z, t)]
denote the basic state and the disturbance vorticity, respectively. The above equations
are supplemented by homogeneous boundary conditions at the lower and upper walls,
i.e.

V D(t, x, yL(x), z) = 0, V D(t, x, 1, z) = 0. (3.3)

Since the basic state and the shape of the lower boundary are periodic in x, the
disturbances are assumed in the form (Floryan 1997)

V D(t, x, y, z) = [û(x, y, t), v̂(x, y, t), ŵ(x, y, t)]eiδx+iβz

=

m=+ ∞∑
m=−∞

[
g(m)

u (t, y), g(m)
v (t, y), g(m)

w (t, y)
]
ei(γ mx+βz) + CC (3.4)

where β and δ are real and denote spanwise and streamwise wavenumbers, respec-
tively, γm = δ +mα, and û, v̂, ŵ describe modulation of disturbances by the corrugation
and are periodic in x. Equations (3.4) and (2.3) are substituted into (3.2), and the
unknowns are expressed in terms of the normal velocity component vD and the
normal vorticity component ωDy , where

ωDy =
∂uD

∂z
− ∂wD

∂x
= −i

m=+∞∑
m=−∞

θ (m)(t, y) ei(γ mx+βz), θ (m) = −βg(m)
u + γmg(m)

w (3.5)

and the Fourier modes are separated resulting in the following form of the disturbance
equations for θ (m), g(m)

v , m ∈ (−∞, +∞):

(
D2 − k2

m

)
∂tg

(m)
v − Re−1

{(
D2 − k2

m

)2 − i Reγm

[
u0

(
D2 − k2

m

)
− D2u0

]}
g(m)

v

= Re−1

∞∑
n=1

(
Ĝ(m,n)

v g(m+n)
v + G(m,n)

v g(m−n)
v + Ĝ

(m,n)
θ θ (m+n) + G

(m,n)
θ θ (m−n)

)
+ G(0)

v g(m)
v , (3.6a)

∂tθ
(m) − Re−1

[
D2 − k2

m − iReγmu0

]
θ (m) + βDu0g

(m)
v

= Re−1

∞∑
n=1

(
Ŝ(m,n)

v g(m+n)
v + S(m,n)

v g(m−n)
v + Ŝ

(m,n)
θ θ (m+n) + S

(m,n)
θ θ (m−n)

)

+ S(0)
v g(m)

v + S
(0)
θ θ (m). (3.6b)

The explicit forms of the operators Gv, Gθ, Ĝv, Ĝθ , Sv, Sθ , Ŝv, Ŝθ are given in Appendix
A. The spanwise and streamwise velocity components can be easily determined from
the known θ (m) and g(m)

v using relations in the form

g(m)
u =

1

k2
m

(
iγmDg(m)

v − βθ (m)
)
, g(m)

w =
1

k2
m

(
iβDg(m)

v + γmθ (m)
)
, k2

m = γ 2
m+β2. (3.7)
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In the case of modal growth (asymptotic instability), when disturbances grow/decay

exponentially in time, i.e. θ (m)(t, y) = θ̂(y) e−iσ t , g(m)
v (y, t) = ĝ(m)

v (y) e−iσ t , the above equa-
tions reduce to those given by Floryan (1997). Floryan (2003) described the vortex
mode of such instability and Floryan (2005) described the travelling wave mode.

It can be shown that boundary conditions (3.3) at the upper (flat) wall take the
form

g(m)
u (t, 1) = 0, g(m)

v (t, 1) = 0, g(m)
w (t, 1) = 0, (3.8a)

where m ∈ (−∞, +∞). Boundary conditions at the lower (corrugated) wall have the
form

û(x, yL(x), t) = 0, v̂(x, yL(x), t) = 0, ŵ(x, yL(x), t) = 0, (3.8b)

where û, v̂, ŵ are x-periodic functions with the wavenumber α. All Fourier coefficients
of these functions must be zero in order to enforce (3.8b).

Equations (3.6) with boundary conditions (3.8) form an initial value problem for
the evolution of disturbances. They can be re-written as

dH
dt

= RH, H t=0 = H0, (3.9)

where h(m) = [g(m)
v , θ (m)]T describes Fourier mode m, H = [. . . , h(−1), h(0), h(1), . . .]T and

the form of the operator R can be easily deduced from (3.6). Solution of (3.9) can be
formally written as

H(t) = eRt H0 (3.10)

and contains complete information about the evolution of disturbances provided that
we can explicitly evaluate the operator exponential. We shall discuss that issue in the
next section.

Our objective is the determination of the growth of disturbances at any time t ,
the maximum possible growth and the initial form of disturbances that produce such
growth and the time when such growth occurs and, finally, the optimal form of the
corrugation, i.e. the amplitude and the wavenumber of the corrugation that leads
to the largest growth. When corrugation amplitude is zero, operator R has non-zero
entries only on the diagonal and the h(m) describe the evolution of disturbance subsets
characterized by streamwise wavenumbers δ + mα, m ∈ (−∞, +∞) that are decoupled
from each other. Schmid & Henningson (2001) discussed the transient (non-modal)
growth of such disturbances. When corrugation amplitude is non-zero, all the h(m) form
a coupled system with the non-zero entries on the off-diagonals of R. This coupling
occurs due to the right-hand sides of (3.6) associated with the spatial structure of the
flow field and due to the boundary conditions (3.8a) associated with the shape of the
wall. The transient growth in this case may occur due to the non-normality within
each disturbance subset as well as due to the possible non-orthogonality between such
subsets.

In the present analysis we use the kinetic energy Ek of disturbances defined as

Ek(t) =
1

4λz

lim
L→∞

1

L

∫ λz

0

∫ 1

yL

∫ L/2

−L/2

(
u2

D + v2
D + w2

D

)
dx dy dz (3.11)

as a measure of disturbance magnitude, where λz =2π/β . The limiting process in
the x-direction is required as the disturbance/corrugation system is not periodic in
general. When the ratio of α and δ is rational, L stands for the periodicity of this
system that is dictated by the smallest common denominator of α and δ; the limiting
process is not required in this case.



Transient disturbance growth in a corrugated channel 249

4. Discretization process and numerical solution
This section a provides discussion of the methodology used in the explicit evaluation

of the formal solution (3.10). We begin with the solution in the form given by (3.4),
truncate it at −M, . . . , +M terms and express the unknowns in terms of Chebyshev
expansions in the form

g(m)
v (t, y) =

k=Kv∑
k=0

Γ m
k (t) T̂ k(y), θ (m)(t, y) =

k=Kθ∑
k=0

Ξm
k (t) T̂k(y) (4.1)

where the Chebyshev polynomials T̂ (y) are defined in the complete computational
domain y ∈ (−1−2S, 1) as required by the implementation of the immersed boundary
conditions concept; they are related to the standard polynomials using relation
T̂ k(y) = Tk[(y + S)/(1 + S)]. Evolution equations for the time-dependent expansion
coefficients can be written as

Q
dη

dt
= −iPη (4.2a)

where η(t) = [Γ m
0 (t), . . . , Γ m

Kv
(t); Ξm

0 (t), . . . , Ξm
Kθ

(t)]T , m = −M, . . . , 0, . . . , M , subject
to boundary conditions

Bη = 0. (4.2b)

The solution utilizes (Kv + Kθ + 2) polynomials with the differential equation (4.2a)
used to construct algebraic equations for the first (Kv − 4) coefficients Γ m and the
first (Kθ − 2) coefficients Ξm for each m, leading to (2M + 1)(Kv + Kθ − 4) algebraic
equations. Matrix B includes 3∗(2∗M + 1) linear relations among Γ m

k , Ξm
k , k =

0, 1, 2, . . . , m = . . . , −1, 0, 1, . . . resulting from the implementation of the immersed
boundary conditions at the lower wall and 3∗(2∗M +1) conditions expressing standard
conditions at the upper wall (Szumbarski 2002; Floryan 2002).

In the case of modal growth, η(t) = z e−iσ t and one obtains a generalized eigenvalue
problem in the form

P̂z = σ Q̂z (4.3)

where

P̂ =

[
P
B

]
, Q̂ =

[
Q
0

]
.

Transient growth problem can be written in an analogous manner in the form

dη

dt
= −iAη, A =

[
Q
B

]−1 [
P
0

]
(4.4a)

subject to initial conditions

η(0) = η0. (4.4b)

It is assumed that the initial conditions are consistent with the field equations and
satisfy boundary conditions (Bη0 = 0). The solution of (4.4) has the form

η(t) = e−iAtη0. (4.5)

The operator exponential provides complete information about the disturbance evolu-
tion. We begin explicit evaluation of this operator by the eigenvalue decomposition
of A, i.e. A = VΛV −1 where Λ denotes the diagonal matrix of eigenvalues and V
denotes the corresponding eigenvectors. We assume that the set of eigenvectors of A
is complete but the formal proof needs to be carried as in the case of the smooth
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channel (DiPrima & Habetler 1969). The operator A may, in general, have degenerate
eigenvalues and thus one would need to include generalized eigenfunctions. It is
known that in the case of smooth channel the form of optimal disturbances varies
smoothly across the degeneracy (Reddy & Henningson 1993) and thus an accurate
representation of the solution close to the degeneracy can be obtained using regular
eigenvalues. Results discussed in § 5 confirm that this does indeed occur in the case
of a corrugated channel; however, formal analysis of the degenerate case remains to
be carried out.

The solution can be written as

η(t) = V e−iΛt V −1η0, e−iΛt = diag {e−iσ1t , . . . , e−iσdimAt}, (4.6)

and can be evaluated without any difficulty at any instant of time. Only N leading
eigenfunctions are used in the calculations, where N is established through numerical
experimentation to provide the desired accuracy for quantities of interest (see § 4.4).
We shall measure the magnitude of disturbances using kinetic energy Ek the evaluation
of which is explained in Appendix B. For convenience, we shall introduce energy norm
of the solution

‖η‖E :=
√

Ek =
√

ηHEη (4.7)

where the explicit form of the symmetric, positive definite matrix E is given in
Appendix B.

4.1. Maximum growth at a specified time

It is of interest to determine the maximum possible growth of disturbances charac-
terized by the wavenumbers δ and β at a given time t = τ > 0 and the corresponding
initial conditions. This problem can be formally posed as finding the maximum value
of ‖η(τ )‖E at time τ over all possible initial conditions η(0) subject to normalization
‖η(0)‖E = 1. This is an optimization problem representing a special case of a more
general problem, i.e. the problem of finding vector χ which gives the maximum of
J(χ) ≡ χHGχ subject to constraint L(χ ) ≡ χHJχ = 1, where G and J are symmetric
positive definite, χ ∈ CN and N defines the size of the matrices.

The solution (4.6) can be written in the form

η(t) = V e−iΛtw where w = V −1η0. (4.8)

The energy norm can be written as

‖η(τ )‖2
E = wHM(τ )w where M(τ ) = eiΛH τ V HEV e−iΛτ (4.9a)

The constraint for the initial energy has the form

‖η0‖2
E = wHM0w = 1 where M0 ≡ M(0) = V HEV . (4.10a)

To solve the constrained optimization problem we follow the approach used by Butler
& Farrell (1992). The extended functional for this problem can be defined as

Φ(w) = wHM(τ )w − ε[wHM0w − 1] (4.11a)

where ε is the Lagrange multiplier for the fixed initial energy. The Euler–Lagrange
equation for this functional can be written in the form of the following eigenvalue
problem:

M(τ )w = ε M0w. (4.11b)

The maximum growth G(τ ) corresponds to the largest eigenvalue of (4.11), i.e.

G(τ ) = εmax (4.12a)
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while the relevant initial conditions and the forms of disturbances at time τ are given
as

η0,max = Vwmax(τ ), ηmax = V e−iΛτ V −1η0,max (4.12b)

where wmax is the eigenvector corresponding to εmax. Note the existence of an
alternative method for the determination of the growth. This method involves the
evaluation of the largest singular value of the matrix F e−iΛτF−1, where F denotes
the Choleski factor of M0 (Schmid & Henningson 2001). The corresponding initial
conditions follow from the relevant right singular vector.

4.2. Maximum growth at any time

We wish to determine the maximum possible growth G(τ ) at any time, i.e.

Gmax = sup
τ>0

G(τ ). (4.13)

We left-multiply (4.11b) by wH and utilize the normalization condition to get

G(τ ) = wH
maxM(τ )wmax. (4.14)

The extremum of G occurs for τ = τmax when dG/dτ = 0. The derivative of G at
t = τmax can be arranged into the following form:

dG

dτ
= i wH

max[Λ
HM0 − M0Λ]wmaxGmax (4.15)

and the condition for the extremum can be written as

wH
τmax[Λ

HM0 − M0Λ]wτmax = 0, (4.16)

where wτmax =wmax(τmax). The above relation has to be solved iteratively as both τmax

and wτmax are not known. We select τ , solve (4.11) for G and wmax, and use (4.16) to
check if the selected τ corresponds to τmax. The initial conditions leading to Gmax and
the corresponding solution have the form

η0,τmax = Vwτmax, ητmax = V e−iΛτmax V −1η0,τmax. (4.17)

4.3. Optimal disturbance and optimal corrugation

The above analysis has been focused on a particular disturbance characterized by its
wavenumbers β and δ assuming that the flow conditions (Re) and the geometry of the
corrugation (S, α) are fixed. We now wish to compare all possible disturbances and
find the one that gives the largest possible growth at any time, i.e. the largest Gmax.
Such growth is referred to, in the case of a smooth channel, as the optimal growth
Gopt and the corresponding initial disturbance is called the optimal disturbance and
is characterized by the optimal wavenumbers βopt and δopt (Schmid & Henningson
2001). This problem needs to be generalized in the present case as the largest
growth depends on the corrugation geometry. We define the optimal growth as the
largest possible growth for any (α, β, δ). The optimal corrugation wavenumber αopt

defines the corrugation that is most effective in promoting transient growth (for
a given amplitude S) and βopt and δopt are the optimal wavenumbers defining the
optimal disturbance. The time required to reach the optimal growth is referred to
as the optimal time τopt. Note that, since this analysis deals with a limited class of
corrugation shapes, the optimal corrugation found here may be sub-optimal as other
shapes could result in a larger disturbance growth. Results available in the case of
an asymptotic instability (Floryan 2004) show that the analysis with the corrugation
shape replaced by its dominant Fourier mode does provide a good estimate of the
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KV = Kθ Gmax τmax

60 249.285 100.061
70 249.248 100.038
80 249.212 100.036

Table 1. The effect of the number of Chebyshev polynomials KV = Kθ used in the numerical
evaluation of Gmax and τmax. Calculations have been carried out for S = 0.02, α = 3, β = 2,
δ = 0, Re= 1000 using 80 polynomials and 20 Fourier modes for the determination of the
basic state, and M = 8 Fourier modes and N = 500 eigenfunctions/eigenvalues used in the
decomposition (4.6) in the transient growth calculations. The numerical parameter selected for
the basic state representation effectively reduced the error to a level that is significantly lower
that the error associated with the transient growth calculation.

N Gmax τmax

100 248.726 100.053
200 249.019 100.041
300 249.108 100.039
400 249.187 100.038
500 249.248 100.038

Table 2. The effect of the number of eigenfunctions/eigenvalues N used in the numerical
evaluation of Gmax and τmax. Calculation have been carried out for KV = Kθ = 70. All other
conditions as in table 1.

M Gmax τmax

6 249.275 100.039
7 249.430 100.051
8 249.248 100.038
9 249.210 100.036

Table 3. The effect of the number of Fourier modes M used in the numerical evaluation
of Gmax and τmax calculations have been carried out for KV = Kθ =70 and N =500
eigenfunctions/eigenvalues. All other conditions as in table 1.

critical stability parameters and thus the potentially sub-optimal corrugation found
here may provide a good estimate of the optimal corrugation.

The complete problem considered here can be posed as finding

Gopt = sup
β,δ,α

Gmax (4.18)

with the corresponding initial disturbance being

η0,opt = η0,τmax(βopt, δopt, αopt). (4.19)

Gopt, η0,opt and τopt are function of both Re and S.

4.4. Numerical accuracy

There are several numerical parameters that may affect the accuracy of the solution,
e.g. the number of Chebyshev polynomials and the number of Fourier modes used
to determine the basic state, the number of Chebyshev polynomials Kv and Kθ

and the number of Fourier modes M used to discretize the stability equations, and
the number of eigenfunctions/eigenvalues N used in the solution of the transient
problem. Tables 1–3 illustrate results of convergence studies and show the correct



Transient disturbance growth in a corrugated channel 253

250

200

150

100

50

0 1 2 3 4 5 6 7 8 9

Gmax k = 0 –1 –2 –3

δ

Figure 2. Variations of the maximum disturbance growth Gmax in a smooth channel for
the flow Reynolds number Re= 1000 and the spanwise disturbance wavenumber β = 2 as a
function of the streamwise disturbance wavenumber δ. Dashed line – classical formulation for
an individual subspace characterized by a single value of δ ± kα, α = 3, k ∈ (−∞,+∞); solid
line – formulation for a system of subspaces characterized by an infinite set of streamwise
wavenumbers δ ± kα, α = 3, k ∈ (−∞,+∞).

values of numerical parameters that guarantee three-digit accuracy. The basic state
in this particular test was determined using 20 Fourier modes and 80 Chebyshev
polynomials, which guaranteed enforcement of boundary conditions with accuracy
O(10−12) and reduced the error of determination of the basic state-several orders of
magnitude below the error of transient calculations.

5. Discussion of results
The main issue that motivates this analysis is the question of whether surface

corrugation increases transient growth compared to the case of smooth channel and,
if the answer is affirmative, by how much. We begin the discussion by describing the
differences between the properties of the problem in the case of smooth and corrugated
channels.

The classical formulation of the transient growth problem in a smooth channel
(Schmid & Henningson, 2001) involves disturbances belonging to a single subspace
characterized by a pair of streamwise and spanwise wavenumbers (δ, β) and it occurs
because of the non-orthogonality of the relevant eigenfunctions. One can construct
a number of such subspaces for the streamwise wavenumbers δ + kα, k = . . . ,

−1, 0, 1, . . . with each disturbance set propagating independently from the rest. The
maximum growth for each set is illustrated in figure 2 using dashed lines. We can
pose another problem where we consider all such (independent) sets together and
determine the maximum growth for the whole system. This growth is given by the
envelope of growths of individual sets and has periodic form with periodicity α in
the δ-direction, as illustrated in figure 2 using solid lines. A formulation involving
several disturbance sets is necessary for the corrugated channel where all sets are
coupled together. The reader should be aware of the differences between the two
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Figure 3. Variations of the maximum disturbance growth Gmax for the flow Reynolds
number Re= 1000 and the spanwise disturbance wavenumber β = 2 as a function of the
streamwise disturbance wavenumber δ. Solid line illustrates Gmax for the corrugated channel
with the corrugation amplitude S = 0.02 and the corrugation wavenumber α = 3, dotted lines
illustrate Gmax computed for subspaces characterized by δ ± kα, α = 3, k ∈ (−∞,+∞) for
the same channel, dashed line illustrates Gmax computed for a smooth channel using classical
formulation.

formulations when comparing results for the transient growth in a smooth channel
found in the literature (in the classical formulation) and the transient growth in a
corrugated channel discussed in this paper.

Disturbance sets (β, δ + kα), k = . . . , −1, 0, 1, . . . , are coupled together in a cor-
rugated channel, where α is the corrugation wavenumber, and grow as a single entity.
The maximum growth is illustrated in figure 3 using solid lines for the same flow
conditions as used in figure 2. This growth occurs due to two effects: (i) the non-
orthogonality of the eigenfunctions within each subset (β, δ + kα), k = . . . , −1, 0,

1, . . . , and (ii) the non-orthogonality of the eigenfunctions between the subsets. The
former effect (i) is similar to that occurring in smooth channels but its strength is
changed due to the corrugation-induced changes of the relevant eigenfunctions. The
latter effect (ii) is new. Dotted lines in figure 3 illustrate the growth computed for each
subset separately (with interactions between them turned off). The negligible difference
between the solid and dotted lines shows that the total growth is dominated by the
non-orthogonality effects within each subset for the range of corrugation amplitudes
subject to this investigation. The dashed line shown in the same figure illustrates
transient growth in a smooth channel using the classical formulation. The difference
between the solid and dashed lines shows that the maximum transient growth increases
by about 25% due to the presence of the corrugation for the flow conditions used
in this example and is concentrated around δ ≈ 0 and negligible elsewhere (the large
difference for the larger values of δ is due to the periodic character of Gmax in the
corrugated channel and should be omitted from this comparison). Note that δ = kα,
k = . . . , −1, 0, 1, . . . , correspond to streamwise vortices (that are modulated by the
corrugation).
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Figure 4. Variations of the maximum disturbance growth Gmax as a function of the
disturbance wavenumbers β and δ for the flow Reynolds number Re= 1000. Solid lines
illustrate Gmax for the complete problem for the corrugation wavenumber α = 3 and the
corrugation amplitude S = 0.02, dotted lines illustrate Gmax computed for a single subspace
characterized by the wavenumber δ for the same channel and dashed lines illustrate Gmax for
a smooth channel in the classical formulation.

Variations of the maximum growth as a function of the disturbance wavenumbers
β and δ for the fixed corrugation geometry (S = 0.01, α = 3) are illustrated in figure 4
for Re= 1000. The same figure shows the growth computed for a single subset
characterized by the wavenumber δ and for the smooth channel using the classical
formulation. It can be seen that the total, subset and smooth channel growths are very
similar when δ <α/2 except for δ ≈ 0 and β ≈ 2–3 where large differences occur. It
appears that corrugation increases the growth of disturbances that are approximately
optimal in the case of a smooth channel, and has little effects on the growth in the
other cases. The large difference between the growth for the complete problem and
the subset and smooth channel growths for δ >α/2 occur due to different functional
spaces used in each case and is irrelevant for the comparison with the growth in a
smooth channel.

Variations of Gmax when the corrugation wavenumber varies from α = 1 to α =10
for the fixed corrugation amplitude S = 0.01 at a fixed Reynolds number Re= 1000
are illustrated in figure 5. The growth is periodic with respect to δ/α and thus the
plots are limited to the range δ/α ∈ (−0.5, 0.5). It can be seen that the optimal growth
occurs at δ =0, β ≈ 2 and it takes the value of Gopt = 199, 206, 203 for α = 1, 3, 10,
respectively, i.e. it is rather insensitive to variations of α in the range of α studied.
Note that Gopt decreases when α increases from 3 to 10, which suggests that further
increase of α would not result in an increased Gopt. The same figure gives results for
the smooth channel. It can be seen that the presence of the corrugation has a very
small effect on the transient growth compared with the smooth channel at such small
values of Re and S (the optimal growth for the smooth channel is Gopt = 196).

Variations of Gmax when the flow Reynolds number increases from Re= 1000
to Re= 3000 for the fixed corrugation geometry (α = 3, S =0.01) are illustrated in
figure 6. The optimal growth Gopt occurs at δ = 0, β ≈ 2 and rapidly increases with
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Figure 5. Variations of the maximum disturbance growth Gmax as a function of the
corrugation wavenumber α for the flow Reynolds number Re= 1000 and the corrugation
amplitude S = 0.01. α =1, 3, 10 in (a), (b) and (c), respectively. Dashed lines illustrate Gmax for
the smooth channel in the classical formulation. The optimal value of the disturbance growth
is Gopt = 196, 199, 206, 203 for the smooth channel and the corrugated channel with α = 1, 3,
10, respectively.

0

1

2

3

4

5

60
80

10
0

12
0

14
0

16
0

18
0

–0.50 –0.25 0 0.25 0.50
0

1

2

3

4

5

–0.50 –0.25 0 0.25 0.50
0

1

2

3

4

5

–0.50 –0.25 0 0.25 0.50

β

δ/α δ/α δ/α

(a) (b) (c)

10
10

40
20

10
20

50
100

200

20
0

40
0

60
0

80
0

10
0

20
0

20
0

40
0 400

200
100

200

80
0

12
00 1600

1020
50
100

100

220

Figure 6. Variations of the maximum disturbance growth Gmax as a function of the flow
Reynolds number for a corrugated wall with the corrugation wavenumber α = 3 and the
corrugation amplitude S = 0.01. Re= 1000, 2000, 3000 in (a), (b) and (c), respectively. Dashed
lines illustrate Gmax for the smooth channel in the classical formulation. The optimal value of
the disturbance growth in the corrugated channel is Gopt = 206, 922, ∞ (asymptotic instability)
for Re= 1000, 2000, 3000, respectively, while it is 196, 784, 1763 for the smooth channel.

Re, i.e. it is 206 (196), 922 (784) and ∞ (1763) for Re = 1000, 2000, 3000, respectively,
where values in the brackets correspond to the smooth channel. Note that the flow
is asymptotically unstable at Re= 3000. The same figure gives results for a smooth
channel; comparison of the results shows that corrugation represents an effective
amplifier for the optimal disturbances, but its effect on other disturbances can be
considered negligible.
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Figure 7. Variations of the maximum disturbance growth Gmax as a function of the
corrugation amplitude for the corrugation wavenumber α = 3 and the flow Reynolds number
Re =1000. Dotted, solid and dashed lines correspond to the corrugation amplitude S = 0.02,
0.01, 0, respectively. Classical formulation is used in the case of smooth channel (S = 0). The
optimal value of the disturbance growth is Gopt =196, 206, 250 for S = 0, 0.01, 0.02, respectively.

Variations of Gmax when the corrugation amplitude increases from S =0 to S = 0.02
for Re= 1000 and α = 3 are illustrated in figure 7. The optimal growth remains at
δ = 0, β ≈ 2 and takes values Gopt = 197, 206, 250 for S = 0, 0.01, 0.02, respectively.
The largest increase of Gmax as a function of S occurs for the optimal disturbances
and can be considered insignificant for other disturbances in the range of parameters
studied.

Dependence of the optimal growth Gopt, the optimal corrugation wavenumber αopt

and the optimal time τopt on the corrugation amplitude S and the flow Reynolds num-
ber Re is illustrated in figures 8, 9 and 10, respectively. The optimal conditions always
occur for the streamwise disturbance wavenumber δopt = kα, k = . . . , −1, 0, 1, . . . ,

while the optimal spanwise disturbance wavenumber βopt changes in the narrow
interval βopt ∈ (2.04, 2.1) in the range of parameters studied. It can be seen that αopt

decreases from 4.4 to 3 when S increases from 0.005 to 0.02 (figure 9), i.e. corrugations
with longer wavelength are more effective in increasing transient growth when the
corrugation amplitude increases. The optimal growth Gopt is fairly insensitive to
the increase of S as long as Re is below its critical value Recr (for the maximum S

considered) that gives rise to the vortex instability similar to that described by Floryan
(2003) (see figure 8). Gopt increases approximately proportionally to Re2 for Re <Recr

similarly to the smooth channel case (Trefethen et al. 1993), but this growth rapidly
accelerates for Re >Recr and S sufficiently high (figure 8). The same observation
applies to τopt (see figure 10).

We shall now focus our attention on the form of optimal disturbances. Figure 11
displays the distribution of the (y, z)-component (vD, wD) of the initial (t =0) optimal
disturbance velocity vector for z ∈ (0, 2π/β), Re= 1000, β = 2, δ = 0, α = 3, S =0.02 at
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Figure 8. Variations of the optimal growth Gopt as a function of the corrugation amplitude
S and the flow Reynolds number Re. Gopt occurs for δ =0 and β in the narrow interval (2.04,
2.1). Grey area denotes conditions for the occurrence of modal instability of the type discussed
by Floryan (2003).
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Figure 9. Variations of the optimal corrugation wavenumber αopt corresponding to the
optimal growth Gopt shown in figure 8 as a function of the corrugation amplitude S and
the flow Reynolds number Re. αopt occurs for δ =0 and β in the narrow interval (2.04, 2.1).
Grey area denotes conditions for the occurrence of modal instability of the type discussed by
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Figure 10. Variations of the optimal time τopt corresponding to the optimal growth Gopt

shown in figure 8 as a function of the corrugation amplitude S and the flow Reynolds number
Re. τopt occurs for δ = 0 and β in the narrow interval (2.04, 2.1). Grey area denotes conditions
for the occurrence of modal instability of the type discussed by Floryan (2003).
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Figure 11. Distribution of the (y, z)-component of the optimal disturbance velocity vector
for z ∈ (0, 2π/β), Re= 1000, β =2, δ = 0, α = 3, S = 0.02 at the initial time t = 0. (a) x = 0,
(b) x = λx/4, (c) x = λx/2, (d) x = 3λx/4 where λx = 2π/α denotes wavelength of the corrugation.
Scale for the vector magnitude is shown above each figure.
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Figure 12. Distribution of the (y, z)-component of the optimal disturbance velocity vector at
the optimal time τopt = 100. The remaining conditions as in figure 11. (a) x = 0, (b) x = λx/4,
(c) x = λx/2, (d) x =3λx/4.

four locations along the streamwise direction at x = 0, λx/4, λx/2, and 3λx/4, where
λx =2π/α stands for the wavelength of the corrugation. All results are normalized
with condition Ek(0) = 1 unless otherwise noted. The initial disturbance has the form
of pairs of streamwise vortices that are slightly modulated along the x-direction;
the maximum magnitude of the velocity vector in this plane at all x-cross-sections is
about 10. Figure 12 shows the same component of the disturbance velocity vector, but
at time t = τopt. Strong modulation in the x-direction is clearly visible with the vortical
motion slowing down on the downhill side of the corrugation peak (figure 12b, c)
and accelerating on the uphill side (figure 12a, d). The motion is concentrated closed
to the corrugated wall on the uphill side (figure 12d , the maximum magnitude of
velocity vector is around 10 here). It diffuses towards the centre of the channel at the
peak of the corrugation (figure 12a). It slows down on the downhill side (figure 12b,
the maximum size of the velocity vector is about 5 here) where the motion in the
opposite direction develops next to the corrugated wall. The reversed motion is clearly
visible in figure 13 displaying an enlargement of the bottom part of figure 12(b). The
vortex begins its recovery at the valley location (figure 12c) where the counter-motion
disappears and rapidly accelerates on the uphill side (figure 12d). Comparison of
figures 11 and 12 shows a slight slowdown and significant redistribution of the vortex
motion between the initial and optimal times.

We shall now consider changes in the streamwise component uD of the disturbance
velocity vector. Figure 14 displays uD associated with the optimal disturbance at time
t = 0 for the same conditions as the vD , wD components discussed above and with the
same normalization. uD has a rather complex distribution with a slight streamwise
modulation associated with the presence of the corrugation at the initial time t = 0;
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Figure 13. Enlargement of the segment of the (y, z)-component of the optimal disturbance
velocity vector near the lower wall at x = λx/4 at the optimal time τopt =100. The remaining
conditions as in figure 11.
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Figure 14. Distribution of the x-component uD of the disturbance velocity vector at the
initial time t = 0. The remaining conditions as in figure 11. (a) x =0, (b) x = λx/4, (c) x = λx/2,
(d) x = 3λx/4. Dashed lines identify zero value.

its values change between −1 and +1 as dictated by the normalization (see figure 14).
The magnitude of uD grows significantly as time increases and reaches values in
the range of approximately −300 to 300 at the optimal time t = τopt (see figure 15).
This acceleration is associated with the lift-up effect that leads to the formation of
streaks. The distribution of uD becomes well-organized at the optimal time, even at
the downstream side of the corrugation peak where vortex motion changes direction,
as illustrated in figure 16 displaying enlargement of the bottom of figure 15(b). There
is an significant modulation of uD in the streamwise direction, especially in the section
between x = λx/4 (figure 15b) and x = λx/2 (figure 15c).

The formation of the streak is illustrated in figure 17 that displays the (x, y)
component of the optimal disturbance velocity vector. The motion is primarily in the
y-direction and has the magnitude O(10) at the initial time t = 0, as illustrated in
figure 17(a). It is re-directed into the x-direction and reaches values O(300) at the
optimal time t = τopt, as shown in figure 17(b).
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Figure 15. Distribution of the x-component uD of the disturbance velocity vector at the
optimal time τopt = 100.05. The remaining conditions as in figure 11. (a) x = 0, (b) x = λx/4,
(c) x = λx/2, (d) x =3λx/4. Dashed lines identify zero value.
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Figure 16. Enlargement of the segment of the x-component uD of the optimal disturbance
velocity vector near the lower wall at x = λx/4 at the optimal time τopt = 100. The remaining
conditions as in figure 11.

The above discussion shows that the presence of the corrugation increases the
magnitude of the transient growth, compared with the smooth channel case, but this
increase is not very dramatic and thus cannot by itself explain the rapid transition
observed in flows over rough walls (Corke et al. 1986). Also, the optimal disturbances
are qualitatively similar in both cases, i.e. they have the form of streamwise vortices
that lead to the formation of streamwise streaks. The possible explanation of the role
of the corrugation in accelerating the transition process may be found by looking at
the details of the disturbance motion and, especially, at the differences in the form
of the transverse shear layers being set up by the optimal disturbances in both cases.
We shall now discuss this issue.

Transverse motion has already been discussed in the context of the description
of vortical motion in the (y, z)-plane (figures 11–13). We now provide more details.
Figure 18 displays the distribution of the spanwise component wD of the optimal
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Figure 17. Distribution of the (x, y)-component of the disturbance velocity vector at z = 0.
The remaining conditions as in figure 11. (a) t = 0, (b) t = τopt = 100.

disturbance vector in the (x, y)-plane. A weak streamwise modulation can be observed
at the initial time t = 0 (figure 18a) but very strong modulation can be seen at the
optimal time t = τopt (figure 18b). This modulation results in the change of direction
of the vortical motion on the downstream side of the corrugation peak and thus leads
to the formation of strong transverse shear layers that may be subject to dynamic
instabilities. The form of spanwise shears layers is displayed in figure 19 at four
streamwise locations x = 0, λx/4, λx/2, 3λx/4 with figures 19(a) and 19(b) showing
data at the initial time t =0 and the optimal time t = τopt, respectively. The same
figure shows equivalent data for the smooth wall. Significantly stronger shear layers
exist in the case of the corrugated wall at t = τopt and dynamic instabilities of these
layers are most likely to accelerate the transition process in the case of corrugated
walls. Figure 20 displays distributions of the streamwise component uD of the optimal
disturbance velocity vector for the same conditions. There is a significant streamwise
modulation in the case of a corrugated wall, with the formation of inflectional velocity
profiles (note a significant scale difference between figures 20a and 20b).

Results discussed above have been obtained for the optimal corrugation of α = 3.
Such a corrugation has a fairly long wavelength that one typically does not associate
with surface roughness. Figures 21 and 22 display the form of shear layers discussed
above but for the corrugation wavenumber α = 15 (this is not an optimal corrugation
for these conditions). Note that the streamwise modulation is limited to a very thin
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Figure 18. Distribution of the z-component wD of the disturbance velocity vector at
z = λz/4 where λz =2π/β denotes spanwise wavelength of the disturbance field. (a) t = 0,
(b) t = τopt = 100. The remaining conditions as in figure 11. Black and white lines denote
positive and negative quantities, respective; dashed line corresponds to zero value.

layer next to the corrugated wall (see figure 21b) with the rest of the profile being
marginally affected by the corrugation. The dynamic instabilities are most likely
weaker and, as the current analysis shows, the transient growth is smaller for such
corrugation. While the shorter corrugation appears to be less effective in promoting
disturbance growth, it should not be dismissed as the transient growth is not much
smaller and the issue of dynamics instabilities needs to be thoroughly analysed before
drawing final conclusions.

The final comment that we make here is to point out the rather complex form of the
optimal disturbances (see figures 20a and 22a). It is unlikely that such disturbances
can occur naturally and thus the fate of the flow system will probably be dictated by
the dynamics of sub-optimal disturbances.

We now focus our attention on the interplay between the asymptotic (modal)
instability and the transient growth. Figure 23 illustrates transient growth as a function
of time for Re =2000, β = 2, δ = 0, α =3 for different corrugation amplitudes S. In each
case the initial conditions have been selected to maximize the growth at time t = 50.
Note a very rapid initial growth regardless of the values of S. This growth eventually
either disappears and disturbances decay for subcritical values of S or asymptotic
growth takes over and disturbances grow without limits for the supercritical values of
S. Asymptotic growth leads to the vortex instability of the type discussed by Floryan
(2003). Onset of transition requires activation of nonlinear effects, which will certainly
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come into play in the case of modal instability. The transient growth is however much
stronger than the modal instability and it may decide the fate of the flow even in the
case of supercritical values of S. Results shown in figure 23 demonstrate that the tran-
sient growth will amplify disturbances by a factor of 500–1000 before modal instability
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catches up. These results suggest that when the flow has large levels of background
disturbances, the transient growth will most likely dominate the initial stages of the
laminar–turbulent transition. If background disturbances are eliminated, the modal
instability will have a chance to develop and it will dominate the transition process.

Finally we comment on the use of surface corrugation as a tool for flow control.
The effectiveness of corrugation depends on the flow conditions and the corrugation
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Figure 23. Transient growth as a function of time for Re= 2000, β = 2, δ = 0, α =3 for
different values of the corrugation amplitude S. Initial conditions are selected in such a
manner that the growth G at time t = 50 attains maximum for each S. Dashed lines illustrate
asymptotes defined by the modal (asymptotic) instability for the supercritical values of S.

geometry. Figure 24 illustrates this as well as the potential of the corrugation for
manipulation of transient growth for Re =3000. When S = 0.008, the maximum
transient growth Gmax is finite and its maximum is fairly flat in the α-direction, i.e.
α in the range from 1.5 to 7.5 gives Gmax that changes within 10 % of Gopt (see
figure 24a). A very small increase of S, i.e. �S =0.002, significantly increases Gmax

around the optimal conditions and gives rise to modal instability (see figure 24b).
Increase of S by another 0.002 dramatically expands the range of modal instability
(see figure 24c). These results demonstrate the dramatic effects of the corrugation
amplitude, assuming that it first reaches a certain minimum value. The effects of the
corrugation wavenumber are less significant, assuming that α is in the correct range.

6. Summary
We have carried out an analysis of transient growth of disturbances in a rough

channel. A general linear transient growth theory has been formulated where the
roughness geometry is represented using Fourier expansions. The explicit calculations
have been carried out for the case of channel bounded by one rough and one smooth
wall with the roughness represented by a single Fourier mode resulting in a sinusoidal
(wavy) wall corrugation. The spectrally accurate numerical method that relies on the
Chebyshev expansions has been used. The boundary conditions at the rough wall
have been enforced using the immersed boundary conditions concept.

The transient growth occurs due to the non-normality of the relevant operator.
The operator consists of a system of coupled sub-operators associated with different
Fourier modes. The growth may occur due to the non-orthogonality of the eigen-
functions within each sub-operator as well as to the non-orthogonality of the eigen-
functions between sub-operators. It has been found that the former effect is dominant
in the range of parameters covered by this investigation.

The surface corrugation appears to increase the growth of disturbances but only
those that are approximately optimal in the smooth wall case. The magnitude of this
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Figure 24. Variations of the maximum growth Gmax as a function of the corrugation
wavenumber α and the spanwise disturbance wavenumber β for the flow Reynolds number
Re= 3000 and the streamwise disturbance wavenumber δ = 0. (a) Corrugation amplitude
S =0.008, (b) S = 0.010, (c) S = 0.012. Grey areas denote conditions for the occurrence of
modal instability of the type discussed by Floryan (2003).

additional growth depends on the distance in the parameter space from the conditions
giving rise to the modal (asymptotic) instability and can vary from very modest to
very large on getting closer to the onset of the instability.

The optimal growth, which is defined as the maximum possible growth for the given
corrugation amplitude, has been identified for the corrugation amplitudes S < 0.02
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and the flow Reynolds numbers Re< 2500. The corrugation shape that leads to
the optimal growth, i.e. the optimal corrugation, has also been found; the optimal
corrugation wavenumber decreases from αopt =4.4 to αopt = 3 as the corrugation ampli-
tude increases from S =0.005 to S = 0.02. It has been found that the optimal distur-
bance, i.e. the disturbance that results in the optimal growth, has the form of stream-
wise vortices with the spanwise wavenumber βopt ∈ (2.04, 2.1) in the range of para-
meters of this investigation.

Comparison of the temporal growth with the growth associated with the modal
(asymptotic) instability shows that the former may reach the values of 500–1000
before the modal instability catches up. This result suggests that the temporal growth
mechanism may dominate the transition process in a noisy environment. It is demon-
strated that the growth process can be manipulated by changing the geometry of the
corrugation.

This work has been carried out with support of SHARCNET and NSERC of
Canada. SHARCNET of Canada provided computing resources. The authors would
like to thank P. Huang for carrying out part of the computations.

Appendix A
Operators used in equations (3.6) are defined as follows:
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Appendix B
The kinetic energy is defined by (3.11). We shall begin discussion of its numerical

evaluation by starting with the first term in the integrand. It is convenient to write
the streamwise disturbance velocity component in the form

uD(x, y, z, t) = û(x, y, t)eiδx+iβz + û∗(x, y, t)e−iδx−iβz. (B 1)

where the form of û can be easily deduced from (3.4). Evaluation of the energy
integral in the spanwise direction results in∫ λz

o

u2
D dz =

∫ λz

0

(û2e2i(δx+βz) + 2ûû∗2 + û∗2e−2i(δi+βz)) dz = 2|û|2λz. (B 2)

Since similar arguments hold for VD and WD , the kinetic energy can be written as

Ek =
1

2λx

∫ λx

0

∫ 1

yL

(|û|2 + |v̂|2 + |ŵ|2) dy dx (B 3)

where λx = 2π/α. The above integrals need to be evaluated numerically. Applying
transformation defined as

x = ξ/α, y = 1
2
[1 − yL(ξ )]ζ + 1

2
[1 + yL(ξ )] (B 4)

they become

Ek(t) =
1

8π

∫ 2π

0
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−1

{|û|2 + |v̂|2 + |ŵ|2}[1 + yL(ξ )] dζ dξ. (B 5)

Insertion of the explicit expressions for û, v̂, ŵ results in

Ek(t) =
1

8π
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where
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The coefficients with the tilde refer to the evaluation of the modal functions in the
(ξ, ζ )-plane. The required Chebyshev polynomials can be expressed as

T̂j (ξ, ζ ) = T̂j

(
1
2
[1 − yL(ξ )]ζ + 1

2
[1 − yL(ξ )]

)
= T̂j (y(ξ, ζ )) = Tj

(
y + S

1 + S

)
.

It is convenient to define matrices E(m,n) made of four sub-blocks. When n, m ∈
(−∞, ∞), the range of indices is truncated in the calculations to (−M, +M) as
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dictated by the number of Fourier modes retained in the calculations. The top left,
bottom left, top right and bottom right sub-blocks are defined as
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respectively, where j = 0, . . . , Kv, k = 0, . . . , Kθ . The above integrals are evaluated
numerically with spectral accuracy using Gauss–Chebyshev and trapezoidal (Isaacson
& Keller 1966) methods in the ζ - and ξ -directions, respectively. The kinetic energy
can be evaluated as

Ek = ηH Eη (B 8)

where the matrix E has the form

E =

⎡
⎢⎢⎢⎢⎢⎢⎣

E(−M,−M) · · · E(−M,0) · · · E(−M,M)

...
...

...
...

...

E(0,−M) · · · E(0,0) · · · E(0,M)

...
...

...
...

...

E(M,−M) · · · E(M,0) · · · E(M,M)

⎤
⎥⎥⎥⎥⎥⎥⎦

, (B 9)

η stands for the vector of unknown coefficients of the Chebyshev expansions defined
in (4.2) and 2M + 1 denotes the number of Fourier modes retained in the solution.
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